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Research performed so far on shells subjected to internal blast loading has developed 
the basic laws of their behavior. The elastic and elastic-plastic response of thin-walled 
shells filled with water was determined in [i, 2], and of shells filled with air under nor- 
mal conditions in [3-7]. 

In the present article we present computational and experimental results of research 
directed toward finding the laws of behavior of spherical shells of various thicknesses in 
the region of plastic deformation (up to rupture) under a single internal blast loading. 

We have studied the behavior of spherical shells of mass M having inside and outside 
radii R~o and R2o respectively and wall thickness ho (Fig. i), filled with a normal air at- 
mosphere, for an internal explosion of a charge 1 of explosive (EX). The shells 2 were made 
of steel 35, and annealed to relieve residual stresses in the area of welded joints. The 
mechanical properties of the shell material were checked by tests of control samples (Ou = 
0.55 GPa, Os(o.2 ) = 0.30 GPa, 6 = 20%).% 

Shells having the same inside radius Rio = 153 mm and various wall thicknesses were 
used in the experiments; some shells were geometrically similar, but scaled down by a fac- 
tor of 4. 

The explosive charges were TH 50/50 (50 wt.% TNT and 50 wt.% hexogen with a density of 
1.65"10 -3 kg/cm s) spheres of radius R3 and mass m, located at the center of the shells, and 
triggered from the center. Each shell was subjected to only one blast loading. 

Following the method described in [8], we used strain gages 3 (Fig. i) to record the 
deformation of the shells as a function of time ~(t). A typical oscillogram of c(t) is 
shown in Fig. 2 (experiment 7). By processing the experimental results for ~(t) the follow- 
ing quantities were determined: v*, the maximum rate of displacement of the shell walls by 
differentiating ~(t); ~*, the maximum strain of the material at the instant the shell walls 
stopped or were ruptured (~* = AR~/R2o, where AR~ = R~ -- R2o; R2o is the initial value of 
the outside radius of the shell, and R~ is the maximum radius in the deformation process); 
t* is the time interval between the beginning of loading and the instant the deformation is 
maximum. 

The estimated errors of the determination of the quantities listed are: v* ~, • ~* 
and t* ~ %5% (for shells which were not ruptured). The dimensions of the shells and the ex- 
perimental results are listed in Table i. 

In a number of experiments with shells having a relative wall thickness ho/R2o = 1.67% 
and 8.1%, the maximum inward velocity of the walls for t > t* was determined also, and this 
made it possible, as in [6], to estimate the dynamic yield stress Os; it turned out to be 
~0.5 GPa. 

By processing data from our experiments and [2] we found that the dynamic hardening 
modulus of St. 35 is relatively small. Therefore, for the relatively small plastic strains 
(~* < 5%) taking place in the experiments, neglecting the elastic part, the shell material 
is rigid-plastic with os = 0.5 GPa. 

%Ou, os, and ~o are respectively the ultimate strength, the yield stress, and the tensile 
strain. 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, 
pp. 103-108, November-December, 1982. Original article submitted June 26, 1981. 

0021-8944/82/2306-0831507.50 �9 1983 Plenum Publishing Corporation 831 



,~ O, 5 ";20 

~ R~o 
3 .  h~ 

Fig. l 

0"-%' ~ 

Fig. 2 

TABLE i. 

d 
Z 

R.,o, 

r n m  

155,6 

166,5 S,1 

41,5 8, t  

6,% m g 

61 
1,67 79 

t05 

460 
576 
700 
945 

10,5 
t4,85 

10 3 

i0 
13 
i7,4 

t3,6 
t7 
20,7 
28 

10 5 I lSer  / 
iTI2 

0,011 
0,014 
0,019 

0,082 
0,103 
0,t24 
0,t68 

0,t7 
0,32 
0,47 

0,24 
0,38 
0,46 
0,59 

0,46 
0,6i 

e*,% 

exp. 

0,5 
0,7 
118 (p) r 

calc. 

0,17 
0,58 
1,5 

0,32 
0,94 
t,9 
4,5 

v*,m/sec 

exp. t a lc  

t*,psec 

exp. calc. 

80 65 
90 83 

15(t i12 

19,8 
28,1 

0.030 
0;043 

0,7 
1,2 
t,9 
3,2 (p) J" 

1,6 
5 (p)T 

t,6 
4,6 

20 8,9 
22 22 
29 42 

21 19 
25 37 
34 54 
60 94 

-- 47 
05 90 

100 97 
140 123 
160 t47 
t20 i99 

35 

~0 51 

t(p)* -- the shell was ruptured in the loading process. 

It is assumed also that for relatively small distances from the inner surface of a shell 
to the charge 2.5 < RIo/R3 < 7, the force of the explosion is determined by the character of 
the reflection of the detonation products (DP) from the shell wall. It is assumed that the 
relative effect of the leading shock wave in air is small in comparison with the effect of 
the DP. 

Clearly this assumption will be fairly accurate in the near zone of the explosion when 
the mass of air involved in the motion is appreciably smaller than the mass of DP. 

Taking account of what has been said, in estimating the effect of DP on a shell, we re- 

placed the actual complex-shaped pressure pulse (Fig. 3, RIo/R3 = 3, 3.8 and 6.8 for curves 
1-3 respectively) by an effective pulse having a constant amplitude equal to the maximum 

pressure of reflection of DP from the shell, i.e., pl T = i, where �9 is the duration of the 
effective pulse, p~ is its amplitude, and i is the magnitude of the specific loading impulse. 

The values of pl for the reflection of DP were determined from the pressure pulse shape 
at the inner surface of the shell, calculated by computer using the method of [9]. The equa- 
tion of state used in the calculation was taken from [i0] for TH 50/50, and from [ii] for 
air. The maximum pressure of reflection as a function of the relative distance RIo/R3 is 
shown in Fig. 4. Just as in [12], this relation is satisfactorily approximated by the ex- 
pression 

Pl = A ( R I o / R ~ )  ~, (1) 

w h e r e  A = 3 . 2  GPa a n d  b = - - 2 . 5 3  i n  t h e  r a n g e  2 . 5  < R ~ o / R 3  < 7 .  

The accuracy of the approximation can be seen from Fig. 4, where the solid curve is a 
plot of Eq. (i), and the individual points are the results of the numerical calculation of 

Pl, 

The magnitude of the specific loading impulse was determined from the relation 

32 mq ~ (2)  
i = n i o , w h e r e i  o - -  27 4 n R ~  ~ 
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is the momentum flux of DP through a unit area at a distance Rio from the center of the 
spherical explosive charge of mass m for a caloricity q of the explosive, and n is a factor 
taking account of the efficiency of the reflection of DP from the wall [13]. 

By considering the reflection of a layer of material with an acoustic impedance (pC)D P 

and a velocity uDp from a layer of material with an impedance pc, it can be shown that in 

the acoustic approximation 

n = 2/((pCbp/pC + l). 
For 0c >>(Pc)Dp, which is true for an appreciable expansion of the DP, n ~2. 

Thus, Eqs. (i) and (2) for n = 2 give an analytic description of the effective pressure 
pulse in the near zone of the explosion for 2.5 ~RIo/R3 ~7, and determine T. 

The dynamics of a spherical thin-walled shell having a radius R(t), a wall thickness 
h(t), a material density p, and a loading pressure p~(t) is described by the equation [3] 

phR = p1(t) -- 2~sh/R. 

We simplify this equation for a region in which there are small changes in R. 

Expressing R and h in terms of the strain ~ = AR2/R2o, the initial radius R2o, and the 
thickness ho, and neglecting small quantities of higher order, we obtain 

(1 - -  2e)phoR = p l ( t ) -  (2aflo/Bo)( I --  3e),where Ro = (R~o+ R2o)/2. 

Neglecting 2a and 3a in comparison with unity for c < 5%, we obtain a linear equation de- 
scribing the motion of a flat plate with a relative mass mo = pho loaded by the pressure p = 

p~(t) -- p2, where P2 = 2osho/Ro is the pressure resisting the motion of the plate. 

Taking account of the parameters of the effective loading impulse, we obtain finally 

= p ,  ( 3 )  

[ P l - - P 2  O ~ t ~ ,  
where  P = - - p ~  t > ~ ( p ~  = 0 for ~ = 0); 

at t : O  R : 0 ,  R : R  o. 

The extremal characteristics of the deformation process can be obtained after integrat- 

ing Eq. (3): 

f l ,  Cz ( P2) 
- -  t - - - -  + R  o, 

2m op.~ P l / 

v * ~  t,.j_' ( 1 - -  Pz/ ,  t* ~ P] -[~- ~_._, 
mo Pl / P2 P2 

or, introducing q = i- Pz/Pl, we obtain 

a* ----- (i2/(2mop2R.2o))q; (4 )  

v* = (Umo)~l; (5) 

t*  = [ 1 / ( 1  - -  ~])1~. ( 6 )  
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If p~ P2, and other conditions remain the same, ~ + i, and Eqs. (4)-(6) take the form 

e* = i2/(2moP2R~o), v* = i/mo, t* = i~2 .  

In this case a regime of pure impulsive loading exists, and the time characteristics of 
the impulse are unimportant. 

If p~ + P2, ~ § 0, and at the same time (for i = const) c* § 0, v* § 0, and t* § T. 

In this case the extremal characteristics of the deformation depend strongly on the 
relative pressure of the pulse P~/Pz or on its relative duration T/t*. 

Using Eqs. (i), (2), and (4) and obvious relations connectin~ the mass of the shell and 
of the charge with their geometry, and making a number of simple transformations, we obtain 
the expression 

/ 64/2qp b b b ( i) i+~2+3X ~,  _ ~ 27 ] ( 3~ ~ T 6 ~ + ~  ( i  - -  6) -(2+~) I - -  5 § --f- 6 ~ 
2A ~ ~--f~] 

A f 30  - ( 1 + 5 )  _ 8)  b _ 1 - + " - 
• ~ k 0 E x J  

For  t h i n  s h e l l s  (~ << 1) t h i s  s i m p l i f i e s  to 

wh ich  d e s c r i b e s  t h e  maximum d e f o r m a t i o n  o f  t h e  s h e l l  a s  a f u n c t i o n  of  t h e  d i m e n s i o n l e s s  p a -  
r a m e t e r s  ~ = m/M, 5 = h o / R l o  w h i c h  c h a r a c t e r i z e  t h e  r e l a t i v e  mass  and  t h e  r e l a t i v e  t h i c k n e s s  
of  t h e  s h e l l ,  and  qp/A~,  ~ / ~ E X ,  and  A/~ s c h a r a c t e r i z i n g  t h e  p h y s i c a l  p a r a m e t e r s  of  t h e  ma-  
terials used. 

In particular, for St. 35 for ~ = 7.8"10 -3 kg/cm 3, Os = 0.5 GPa, PEX = 1.65"i0-3 kg/ 
cm ~, q = 4.77"103 kJ/kg (TH 50/50), A = 3.2 GPa, and b = --2.53, Eq. (7) takes the form 

e* = t,05.t02~2[1 - -  3,3,10-~5o,1~7~-o.~]. (8) 

The values of c*, v*, and t* calculated with Eqs. (8), (5) and (6) are compared with 
the experimental results in Table i, where the values of ~ listed correspond to the loading 
conditions. 

Figure 5 shows the calculated dependence of e* on ~ for various values of the relative 
thickness ~ [i) 1.67%; 2) 8.1%]. For comparison the figure also shows the experimental val- 
ues of ~*. Points enclosed in circles correspond to rupture of the shell. A comparison of 
the calculated and experimental values shows satisfactory agreement (10-20%) for ~ ~13"i0 -s. 

For deformations which are nearly elastic, the accuracy of the description falls outside 
the 20% limit. This is evidently due to the fact that the computational scheme used a rigid- 
plastic model of the material with a value of the yield stress independent of the strain rate, 
and also neglected the initial elastic part. The possibility of a change of the yield stress 
with a change in strain rate has been shown experimentally in [i~]. The high-intensity part 
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of the pulse corresponding to a shock wave in air was also neglected. All that has been 
said leads to calculated values of ~ which are smaller than the experimental for small val- 
ues of ~. 

The results of experiment 7 lie somewhat outside the estimated error limits. The dif- 
ference between calculation and the results of experiment 7 is accounted for by the prema- 
ture rupture of the shell before it reached maximum deformation corresponding to the loading 
regime given in Table i. This can be seen from a comparison with experiment 9 which had the 
same input parameters as experiment 7 (~ ~28.10 -3, @ = 8.1%). 

The computational scheme used also satisfactorily describes the kinematic characteris- 
tics of the process v* and t* (Table i). 

We note that calculation and experiment yield a value of the relative mass ~ ~9"i0 -~ 
which is weakly dependent on the relative thickness 6 at which there is a sharp bend in the 
E*(~) curve. The region ~ < 9.10 -3, which is of particular practical interest, corresponds 
to small plastic deformations which are nearly elastic. For ~ > 9"10 -~ there is a rapid in- 
crease in deformation with increased loading clear up to rupture at ~* ~ 2-3%, depending on 
the relative thickness of the shell. 

Thus, our experimental results show that a simple physical model gives a satisfactory 
analytic description of the parameters of plastic deformation of spherical shells of mild 
steel under internal symmetric loading by the explosion of a charge of TH 50/50. 
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